Residues His-15 and Arg-17 of HPr participate differently in catabolite signal processing via CcpA.
نویسندگان
چکیده
The carbon catabolite control protein A (CcpA) senses the physiological state of the cell by binding several effectors and responds with differential regulation of many genes in Bacilli. HPr-Ser46-P or Crh-Ser46-P interact with CcpA and stimulate binding to catabolite responsive elements. In addition, the glycolytic intermediates fructose 1,6-bisphosphate (FBP) and glucose 6-phosphate (Glc-6-P) stimulate HPr-Ser46-P but not Crh-Ser46-P binding to CcpA. The mechanisms by which coeffector binding to CcpA is linked to differential gene expression are unclear. To address this question we mutated residues participating in the interaction between HPr-Ser46-P or Crh-Ser46-P and CcpA and analyzed their effects on CcpA binding and stimulation of cre binding by surface plasmon resonance. The HPrH15A and CcpAD297A mutations do not affect complex formation but abolish FBP and Glc-6-P stimulation. Likewise, the CrhQ15H mutant becomes sensitive to these glycolytic intermediates. Hence, the contact of HPrHis-15 to Asp-297 in CcpA is a determinant for HPr specific FBP and Glc-6-P stimulation. The HPrR17A and -K mutants are both strongly impaired in stimulation of CcpA binding to cre, but only HPrR17A is defect in binding to CcpA indicating that these residues affect allostery of CcpA. Mutations of the residues of CcpA, which contact Arg-17 of HPr, exhibit differential effects on regulation of catabolic genes. Taken together, His-15 of HPr processes sensing information, while Arg-17 is involved in determining the genetic output.
منابع مشابه
Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.
Carbon catabolite repression of the gnt operon of Bacillus subtilis is mediated by the catabolite control protein CcpA and by HPr, a phosphocarrier protein of the phosphotransferase system. ATP-dependent phosphorylation of HPr at Ser-46 is required for carbon catabolite repression as ptsH1 mutants in which Ser-46 of HPr is replaced with an unphosphorylatable alanyl residue are resistant to carb...
متن کاملStructures of carbon catabolite protein A–(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators
In Gram-positive bacteria, carbon catabolite protein A (CcpA) is the master regulator of carbon catabolite control, which ensures optimal energy usage under diverse conditions. Unlike other LacI-GalR proteins, CcpA is activated for DNA binding by first forming a complex with the phosphoprotein HPr-Ser46-P. Bacillus subtilis CcpA functions as both a transcription repressor and activator and bind...
متن کاملCarbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
Carbon catabolic repression (CR) by the catabolite control protein CcpA has been analyzed in Staphylococcus xylosus. Genes encoding components needed to utilize lactose, sucrose, and maltose were found to be repressed by CcpA. In addition, the ccpA gene is under negative autogenous control. Among several tested sugars, glucose caused strongest CcpA-dependent repression. Glucose can enter S. xyl...
متن کاملEffect of HPr phosphorylation on structure, dynamics, and interactions in the course of transcriptional control.
The serine46-phosphorylated form of the bacterial protein HPr fulfils an essential function in carbon catabolite repression (CCR). Using molecular dynamics (MD) we studied the effect of Ser46 phosphorylation on the molecular properties of HPr and its capability to act as the co-repressor of carbon catabolite protein A (CcpA). The calculated pK (a) values for a representative set of HPr(Ser46P) ...
متن کاملAnalysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system.
A single-copy reporter system for Staphylococcus xylosus has been developed, that uses a promoterless version of the endogenous beta-galactosidase gene lacH as a reporter gene and that allows integration of promoters cloned in front of lacH into the lactose utilization gene cluster by homologous recombination. The system was applied to analyze carbon catabolite repression of S. xylosus promoter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 2 شماره
صفحات -
تاریخ انتشار 2007